a2 United States Patent

Marquess et al.

US009483579B2

US 9,483,579 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD, SYSTEM AND COMPUTER
PROGRAM FOR ADDING CONTENT TO A

DATA CONTAINER
(71) Applicant: Openwave Mobility Inc., Redwood
City, CA (US)
(72) Inventors: Paul Marquess, Belfast (GB); Aaron
David Irvine, Antrim (GB)
(73) Assignee: Openwave Mobility Inc., Redwood
City, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 208 days.
(21) Appl. No.: 14/250,218
(22) Filed: Apr. 10, 2014
(65) Prior Publication Data
US 2014/0310292 Al Oct. 16, 2014
(30) Foreign Application Priority Data
Apr. 10, 2013 (GB) .oeeceeecitceeeene 1306531.3
(51) Imt.CL
HO04N 21/00 (2011.01)
GO6F 17/30 (2006.01)
HO4L 29/06 (2006.01)
HO4N 21/234 (2011.01)
HO4N 21/845 (2011.01)
(52) US. CL
CPC ... GO6F 17/30943 (2013.01); HO4L 69/04
(2013.01); HO4L 69/22 (2013.01); HO4N
21/23424 (2013.01); HO4N 21/8456 (2013.01)
(58) Field of Classification Search
CPC ..ccovvvvvcrnne GOG6F 17/30946; HO4N 21/23424
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,096,488 Bl 8/2006 Zhang et al.

Determine
content-
encoding type

600

/

Determine
header size

2
60\

604

Determine
type of
operation

Add new data

to compressed

payload after
header

606

7

608
N

Append

7,949,052 Bl 5/2011 Wu et al.
2004/0229650 Al* 11/2004 Fitton HO04B 7/0811
455/561

2006/0047523 Al 3/2006 Ojanpera
2007/0040934 Al* 2/2007 Ramaswamy HO4N 21/235
348/385.1
2007/0091810 A1* 4/2007 Kimccovveenrrnenn HO04L 1/1635
370/236

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0684570 A1 11/1995
WO 2005-099385 A2 10/2005
WO 2011100758 Al 8/2011

OTHER PUBLICATIONS

European Search Report issued in related case EP 14164180.3 dated
Jun. 12, 2014 (8 pages).
(Continued)

Primary Examiner — Grace Park
(74) Attorney, Agent, or Firm — EIP US LLP

57 ABSTRACT

There is described a system for adding content to a data
container, the data container comprising one or more seg-
ments arranged in a sequence, each segment containing
payload data and wherein at least one of the one or more
segments is compressed. The system comprises parsing
through at least a portion of the data container so as to
determine at least one of a beginning and an end of the
sequence of segments; and adding content to the data
container at the at least one of the beginning and the end of
the sequence of segments, while the at least one of the
segments remains compressed.

12 Claims, 8 Drawing Sheets

Parse
compressed
payload

610
Vv

Determine end
of compressed
payload

612

Add new data
atend of
compressed
payload

/614

CRC

US 9,483,579 B2
Page 2

(56)

2007/0139704
2009/0003432
2009/0287784
2010/0113074
2010/0161825

2010/0223519

2011/0185077

References Cited

U.S. PATENT DOCUMENTS

2011/0317547 Al
2012/0137015 Al*

12/2011 Baudoin et al.
5/2012 Sun ..o HO4N 21/26258

709/231

Al 6/2007 Ogura OTHER PUBLICATIONS
Al 1/2009 Liu et al.
Al 11/2009 Haruna Popa et al., “CryptDB: Protecting Confidentiality with Encrypted
Al 5/2010 Sheppard Query Processing”, SOSP 11, Oct. 23-26, 2011, Cascais, Portugal.
Al* 6/2010 Ronca HO4N 21/23424 GnuPG “How to edit the file without decrypt and save to local disk
709/231 first?”; http://stackoverflow.com/questions/1510105/gnupg-how-to-
Al* 9/2010 Swoboda GOIR 31/31705 edit-the-file-without-decrypt-and-save-to-local -disk-first; Oct. 2,
714/733 2009.
Al* 7/2011 Bremler-Barr HO3M 7/3086
709/231 * cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 8 US 9,483,579 B2

106-1
100 f

102

104 106-2

108

106-3

Figure 1

U.S. Patent

Nov. 1, 2016 Sheet 2 of 8

118 —~

4~
102
112~ -
120 ~
i
104
Ve

Figure 2

US 9,483,579 B2

124 ~

122

U.S. Patent Nov. 1, 2016 Sheet 3 of 8 US 9,483,579 B2

102 104 106-1
\ 132-1 \ 132-2 \

UE \ INE \ Origin Server

Browser Splicer Content

J /] /]
/ 136 / 134 /
126 128 130

Figure 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 8 US 9,483,579 B2

Parsing through at least a portion of a data container so as
to determine at least one of a beginning and an end of a | _— 400
sequence of segments, each segment containing payload

data.

y

Adding content to the data container, at the at least one of
the beginning and the end of the sequence of segments, 402
: ; |
while the at least one of the segments remains
compressed.

Figure 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 8 US 9,483,579 B2

00~ | Receive HTTP
responsce

502

504
Add data? Send s

506

Splice
possible without

D /
deCOl’np| ession ‘) eCOmpl CSS

y

514 . Augment 510
\ leeizeerméIilEt decompressed e
p p data
A y
516 Augment 512
\ compressed Recompress e
data
A
518 Send modified
\ HTTP <
response

Figure 5

U.S. Patent

600
“

602
\

604

US 9,483,579 B2

606
AN

608
X

Nov. 1, 2016 Sheet 6 of 8
Determine
content-
encoding type
A
Determine
header size
Determine Append Parse Ve 610
type of compressed
operation payload
A 4
Determine end 612
Prepend of compressed e
1
Add new data payload
to compressed J
payload after Add new data
header at end of 614
compressed |/~
payload
A 4
Reconfigure |,
CRC

Figure 6

U.S. Patent Nov. 1, 2016 Sheet 7 of 8 US 9,483,579 B2
734
R 2
RFC 1952 RFC 1952

Header Data RFC 1951 Data Stream

Trailer Data

Figure 7
834
838 ~ 840 842
N \§ <,
RFC 1950 YT

Header Data RFC 1951 Data Stream

Trailer Data

Figure 8

940

941 \‘ 943
= N

Header Data Payload Data

Figure 9

U.S. Patent

Nov. 1, 2016 Sheet 8 of 8 US 9,483,579 B2
1034
10\3i \ 1(@ 1(@ 1(&
Bzip2 Compressed Compressed Trailer +
Header Data Block Block EOS marker
Figure 10
1134
114\1:1 \q 114\1&2 11&3 114&4
Chunk 1 Chunk 2 Chunk 3 Chunk n
Figure 11a
1146
llég \q 115& 11 a 115<
ID Length CRC Data

Figure 11b

US 9,483,579 B2

1

METHOD, SYSTEM AND COMPUTER
PROGRAM FOR ADDING CONTENT TO A
DATA CONTAINER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(a)
to GB Patent Application No. 1306531.3, filed on Apr. 10,
2013, the entire content of which is hereby incorporated by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present application relates to a method, system and
computer program for adding data to a data container.

2. Description of the Related Technology

It is often desirable to add data to an already existing data
container. For example, it is often desirable in a communi-
cations network to intercept a message between two com-
municating entities and add data to a data container in the
message. For example, a user equipment in the communi-
cations network may request media content from a content
provider. A server can intercept the request for media
content, forward it onto the content provider, intercept the
response from the content provider and add data to the
response before sending the response onto the user equip-
ment.

Such alteration could, for example, be used for advertis-
ing purposes. A user may load a web page using a web
browser and the browser may send a Hypertext Transfer
Protocol (HTTP) request message to an origin server (i.e. a
content provider) in order to retrieve specified content. An
advertising server may intercept such a message and forward
it onto the origin server. The advertising server may inter-
cept a corresponding HTTP response message and modifies
the HTTP response message to include an advertisement.
The loaded web page in the user’s web browser may then
display the advertisement.

Typically, a HT'TP response is compressed with a speci-
fied content-encoding in order to reduce the size (i.e. reduce
the number of bytes) of the HTTP response. This can be
useful in general to reduce congestion in the network. Some
of the most commonly used content encoding techniques for
compression are the “gzip” (GNU-zip) encoding and the
“deflate” encoding as defined in the RFC (Request For
Comments) 2616 standards document. A content encoding
of gzip comprises a data stream compressed in accordance
with RFC (Requests for Comments) 1951 embedded in a
container in accordance with RFC 1952. A content encoding
of ‘deflate’ comprises a data stream compressed in accor-
dance with RFC 1951 but embedded in a container in
accordance with RFC 1950.

When modifying a HTTP response having a payload with
a specified content-encoding so as to include additional data,
the payload must first be decompressed, the additional data
added to the data of the decompressed payload and the
modified response (i.e. having the data as well as the
additional data) is then recompressed before being transmit-
ted to its destination. In general, this procedure is necessary
because simply pre-pending or appending the additional data
to the received HTTP response would produce a data con-
tainer that is non-compliant with the content encoding
technique used to encode the original payload. Such decom-
pression and recompression consumes processing power,
memory and adds latency to the network signaling. The

10

15

20

25

30

40

45

50

55

60

65

2

decompression and recompression can also cause “bloating”
of the HTTP response where the recompression is not as
effective as the original compression and thus the delivered
content (i.e. the modified HTTP response) is larger than the
original HTTP response. Such bloating also adds latency and
congestion in the communications network.

SUMMARY

In a first embodiment of the application, there is a system
for adding content to a data container, the data container
comprising one or more segments arranged in a sequence,
each segment containing payload data and wherein at least
one of the one or more segments is compressed, the system
comprising at least one processor; and at least one memory
including computer program code; the at least one memory
and the computer program code may be configured to, with
the at least one processor, cause the system to at least: parse
through at least a portion of the data container so as to
determine at least one of a beginning and an end of the
sequence of segments; and add content to the data container
at the at least one of the beginning and the end of the
sequence of segments, while the at least one of the segments
remains compressed.

Therefore, parsing the data container to determine at least
one of the beginning and the end of the sequence of
segments allows content to be added to the data container
without requiring a full decompression of the data container.
This reduces the amount of processing required when adding
content to a data container (as the entire payload contained
in the data container need not be fully decompressed before
any data is added) and reduces memory usage.

In a second embodiment of the application, there is a
method for adding content to a data container, the data
container may comprise one or more segments arranged in
a sequence, each segment containing payload data and
wherein at least one of the one or more segments is com-
pressed, the method may comprise parsing through at least
a portion of the data container so as to determine at least one
of'a beginning and an end of the sequence of segments; and
adding content to the data container at the at least one of the
beginning and the end of the sequence of segments, while
the at least one of the segments remains compressed.

In a third embodiment of the application, there is a
non-transitory computer-readable storage medium having
computer-executable instructions stored thereon, which,
when executed by a processor cause a computing device to
perform a method for adding content to a data container, the
method comprising: parsing through at least a portion of the
data container so as to determine at least one of a beginning
and an end of the sequence of segments; and adding content
to the data container at the at least one of the beginning and
the end of the sequence of segments, while the at least one
of the segments remains compressed.

Further features and advantages of the application will
become apparent from the following description of embodi-
ments of the application, given by way of example only,
which is made with reference to the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram showing an example
of a communications network;

FIG. 2 is a schematic block diagram showing network
elements present in the communications network of FIG. 1
in further detail;

US 9,483,579 B2

3

FIG. 3 is a schematic block diagram showing an example
of signaling in the communications network of FIG. 1;

FIG. 4 is a schematic state flow diagram showing pro-
cesses that occur in a first example of a method according to
one or more disclosed embodiments;

FIG. 5 is a schematic block diagram showing a process for
modifying a HTTP response in a second example of a
method according to one or more disclosed embodiments;

FIG. 6 is a schematic block diagram showing a process for
modifying a HTTP response in a third example of a method
according to one or more disclosed embodiments;

FIG. 7 is a schematic block diagram showing an example
gzip file format for a data container according to one or more
disclosed embodiments;

FIG. 8 is a schematic block diagram showing an example
deflate file format for a data container according to one or
more disclosed embodiments;

FIG. 9 is a schematic block diagram showing an example
data block for a data container according to one or more
disclosed embodiments;

FIG. 10 is a schematic state flow diagram showing an
example bzip2 file format for a data container according to
one or more disclosed embodiments; and

FIGS. 11a and 1156 are schematic state flow diagrams
showing an example snappy framing file format for a data
container according to one or more disclosed embodiments.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

In the following description of embodiments it should be
noted that the term “user equipment” (UE) includes appa-
ratus that are both wireless devices and wired devices. In
general, wireless devices include any device capable of
connecting wirelessly to a network. This includes in par-
ticular mobile devices including mobile or cell phones
(including so-called “smart phones™), personal digital assis-
tants, pagers, tablet and laptop computers, content-consump-
tion or generation devices (for music and/or video for
example), data cards, USB dongles, etc., as well as fixed or
more static devices, such as personal computers, game
consoles and other generally static entertainment devices,
various other domestic and non-domestic machines and
devices, etc. The UE includes a “user agent” that comprises
a software application that communicates with a network
such as the Internet. Examples of ‘user agents’ include
browsers (e.g. Internet Explorer®, Mozilla Firefox®,
Google Chrome®, and so forth) that act as a user interface
to communicate with the Internet, e-mail user agents, and
apps. The user agent may use any suitable protocol as its
transport or communications mechanism. For example, the
user agent may use the Hypertext Transfer Protocol (HTTP).

Embodiments of the present invention relate to adding
content to data containers having a particular content-en-
coding format. For example, the data container may form a
part of an HTTP response. Therefore, such a HTTP response
may comprise HT'TP headers, the data container, and HTTP
trailer data. The data container itself may also comprise
header and trailer data, depending on the format specified by
the content-encoding that is applied to the data container.

The term “encoding” generally refers to the process of
configuring a file in a format for execution such as by
execution by a web browser (i.e. a software application) of
a user device. This term therefore can broadly encompass
techniques such as transcoding, transrating, optimization
and compression depending on the context in which the term
is used. In the examples discussed herein, an encoded or

10

15

20

25

30

35

40

45

50

55

60

65

4

compressed file or payload is one in which the original file
size has been reduced and thus may also refer to a
transcoded, transrated, optimized and/or compressed file. In
any case, the file is referred to as being encoded due to
having a particular content-encoding such as having one of
the following content-encoding file formats: gzip (Gnu Zip),
deflate, zip, bzip, bzip2, snappy file framing and 1zip. It will
be understood that this list is non-exhaustive and that other
content-encodings will be applicable in the context to which
the invention can be applied.

Particular content-encodings have arrangements of seg-
ments, which form at least part of the data container. For
example, in particular examples discussed herein, the seg-
ments are referred to as “blocks” or “chunks”. However, the
term “‘segment” as used herein is intended to cover any such
division, portion or sub-section of data of the data container.

The term “splice” as used herein means “to join together”
and refers to the joining of new data with existing data in a
manner such that they can be concatenated together.

Throughout this specification, there is discussed a “pars-
ing”, “traversal”, or “walking” of a data structure such as a
data container having an identified file format, content-
encoding or other such known internal structure of data
formatting. In the context of the invention, such terms refer
to the process of reading and identifying specific points in a
file format corresponding starting points or end points of
data that has been characterized by the file format. There-
fore, for example, the file format can be traversed so that
different characterized portions of the file are identified.

The term “decompress” or “un-compress” as used herein
refers to the general process required to restore compressed
or encoded content to its original form, or as close as
possible to its original form. Such decompression is typi-
cally dependent on the compression or encoding format used
to compress the original content, which in some cases may
be “lossless” (i.e. no loss of information during the com-
pression) or “lossy” (i.e. where data may be lost during the
compression).

FIG. 1 shows schematically a simplified example of a
communications network 100, which may typically com-
prise, for example, an Internet Protocol Multimedia System
(IMS) architecture. The network comprises a plurality of
network elements 102, 104, 106, 108. In particular, there are
a plurality of UEs 102 (only one shown and described for
simplicity of explanation), an intermediate network element
(INE) 104, and a plurality of servers 106. The INE 104 is
used to intercept messages in the communications network
100 sent between the UE 102 and the servers 106 and can be
used to selectively control and modity such messaging. For
example, the servers 106 may host content such as web
pages and media files and the UE 102 may signal one or
more of the servers 106 so as to retrieve such content. The
INE 104 may intercept, modify and control the content
before it is passed onto the UE 102. Therefore, the UE 102
is in communication with the INE 104, which in turn is in
communication with each of the plurality of servers 106.
The INE 104 is capable of communicating with the plurality
of servers 106 via the internet 108. Although in this figure,
the INE 104 is shown to be placed between the UE 102 and
the internet 108, it will be understood that this is for ease of
illustration only and that the INE 104 can be placed at any
point in the communications network so that it is capable of
intercepting communications between the UE 102 and the
servers 106. The UE 102 is capable of communicating with
the INE 104 via the internet 108 or via some other commu-
nications network.

US 9,483,579 B2

5

FIG. 2 shows schematically a UE 102 such as a mobile
phone, an INE 104, a server 106 and a network control
apparatus 110 for use in the communications network 100 of
FIG. 1. The UE 102 contains the necessary radio module
112, processor(s) and memory/memories 114, antenna 116,
etc. to enable wireless communication with the network. The
UE 102 in use is in communication with a radio mast
associated with the network control apparatus 110. As a
particular example in the context of UMTS (Universal
Mobile Telecommunications System), there may be a net-
work control apparatus 110 (which may be constituted by for
example a so-called Radio Network Controller) operating in
conjunction with one or more Node Bs (which, in many
respects, can be regarded as “base stations”). As another
example, LTE (Long Term Evolution) makes use of a
so-called evolved Node B (eNB) where the RF transceiver
and resource management/control functions are combined
into a single entity. The network control apparatus 110 (of
whatever type) may have its own radio module, processor(s)
and memory/memories, etc. Similarly, the INE 104 may
have its own radio module 118, processor(s) and memory/
memories 120, etc. Similarly, each of the plurality of servers
106 may have their own radio module 122, processor(s) and
memory/memories 124, etc.

The INE 104 is a device, network node or module that can
be co-located or integrated with existing network architec-
ture. As such, in some examples, the INE 104 may form part
of a cellular network. In one example, it may be a stand-
alone device, such as a proxy server. The INE 104 is said to
be “intermediate” because it is placed in the communica-
tions network between the UE 102 and other network
elements such as the origin server 106-1, and one or more
other servers 106-2, 106-3 which may be associated with
third party content providers (i.e. third party in the respect
that they are different from an operator associated with the
INE 104). The INE 104 is used to intercept signaling or
messages from the UE 102 and to determine whether or not
any control, modification or optimization of content is
desirable before being provided to the UE 102. For example,
the INE 102 can be used to add data to the messages,
determine access rights for the UE 102 to allow access to the
content of the messages, or optimize or compress the mes-
sages. For example, the content may be Hypertext Markup
Language (HTML) content or media content such as audio,
video, text and/or images. The INE 104 comprises a pro-
cessing system and memory containing computer readable
instructions which are executed by the processing system for
the INE, or any of its components or modules, to perform
their functions. The INE 104 also comprises suitable com-
munications interfaces for communicating with other enti-
ties in the network.

FIG. 3 shows a schematic block diagram of an example of
the system architecture of FIG. 1 in further detail. There is
provided a UE 102 having a user agent, in this example a
web browser 126, an INE 104 having a splicer module 128
and an origin server 106-1 having content 130. The INE 104
is located in a communication path between the UE 102 and
the origin server 106-1. In this example, the INE 104 is
arranged to intercept all communications between the UE
102 and the origin server 106.

The splicer module 128 of the INE 104 is used to
selectively modify messages from the origin server 106-1
for sending to the UE 102. The origin server 106-1 generally
contains data and content populated by an operator of the
origin server 106-1 and as such may contain a database (not
shown) to store such content.

25

40

45

55

6

In the operation of one example, when a user of the UE
102 wishes to view a web page in the browser 126, the user
may cause the browser 126 to compile and send a request
message, such as a Hypertext Transfer Protocol (HTTP)
request 132-1, towards a server that hosts the web page,
which in this case is the origin server 106-1. The request
132-1 may be triggered in response to various events, such
as in response to the user entering a Uniform Resource
Locator (URL) in an input field of the browser 126, or in
response to the user selecting a hyperlink, which initially
loads the browser 126 and automatically sends the request
132-1 so as to fetch the web page.

The INE 104 intercepts or receives the request 132-1 and
analyzes it to determine the destination of the request 132-1,
which in this case is the origin server 106-1. The request
132-1, in this example, is accordingly forwarded to the
origin server 106-1 in its original format as a HTTP request
132-2. Based on the received HT TP request 132-2, the origin
server 106-1 sends a HTTP response 134 destined for the UE
102. The response 134 contains at least a portion of the
requested content, such as the requested web page.

The INE 104 intercepts the HTTP response 134 and uses
splicer module 128 to decide whether or not any modifica-
tion of the response 134 is desirable so as to control how the
browser 126 of the UE 102 can handle the response. The
splicer module 128 may determine based on one or more
factors (or combination of factors) that a response is a
candidate for modification. Non limiting examples of such
factors include (1) that the HTTP Response message has a
content-type of “text/html” or one of its variants; (2) that the
user of the UE 102 has ‘subscribed’ to a service that the
splicing facilitates; (3) that the UE 102 supports a particular
type of content that is to be spliced into the response.

In one example, the splicer module 128 may determine
that the UE 102 supports Javascript, so that the content of the
response is to have some Javascript (or a link thereto)
spliced into it. For example, the Javascript when executed
within the user’s browser 126 may cause a ‘floating toolbar’
to be displayed with which the user may interact. This
toolbar is defined to be “floating” such that, when a web
page is displayed in the user’s browser and the toolbar is
displayed, the user can scroll on a web page without the
toolbar changing its position relative to the browser frame.
The toolbar may have a plurality of user selectable icons for
triggering further dedicated JavaScript applications, such as
applications for retrieving weather information or for
retrieving information about the stock markets, and so forth.

Any such response, whether modified or not, is then
forwarded to the UE 102 as a HTTP response 136 for
execution by the browser 126 of the UE 102.

If the splicer module 128 determines that data is to be
added to the response 134, it then adds to or “splices™ data
with the HTTP response 134 so as to create a modified
HTTP response 136. The splicer module 128 may also
determine whether or not such data is to be compressed
before being spliced with the HTTP response 134. Such
compression may be the same as the content-encoding of the
content with which the data is being spliced.

The UE 102 receives the modified HTTP response 136
and the browser 126 then executes the response to display
the web page. Although specific examples herein are based
on the interception of a HTTP response, it will be understood
that the addition of data could occur at a source of the data
transmittal, such as at a content provider. In such a case, no
interception of a message at an INE 104 is required, but
instead, the content provider may dynamically add data to
existing content in the general manner described herein. As

US 9,483,579 B2

7

such, the data container having the content-encoding need
not be comprised within a HTTP response but may instead
be a stand-alone data container or may be comprised within
another form of message.

FIG. 4 shows a schematic state flow diagram of processes
that occur in a first example of a method. The method may
be used for adding data to a data container, where the data
container may comprise a plurality of segments arranged in
a sequence. Each segment contains payload data, and at least
one of the segments is compressed. The method, for
example, may be used by the INE 104 for modifying
communications in a communications network 100, such as
the IMS network shown in FIG. 1.

At step 400, at least a portion of a data container is parsed
s0 as to determine at least one of a beginning and an end of
the sequence of segments. For example, the data container
may be a known content-encoding or format, such as gzip or
deflate of content contained within an HTTP response 134.
As such, the data container may be parsed or traversed by the
INE 104 so as to determine the points at which the sequence
of segments starts and/or ends.

At step 402, the content is added or “spliced” into the data
container so as to effectively augment the payload data
contained in the data container. This is done in a manner
such that the payload data does not need fully decompress-
ing in order to add the content. Therefore, the content is
added while at least one of the segments remains com-
pressed. As discussed by example in relation to FIG. 3, the
data container may be comprised within a HT'TP response
134 and may contain web page data for execution by the UE
102. The content to be added to the data container may be
a floating toolbar that is to be superimposed on the web page
when executed by the browser 126 of UE 102.

FIG. 5 is a schematic block diagram showing the modi-
fication of a received HTTP response 134 at the INE 104 in
more detail.

At step 500, the HTTP response 134 is received by the
INE 104 from the origin server 106-1. The HTTP response
134 may comprise a header indicative of the content of the
response and a payload comprised within a data container. In
this example, the payload is the compressed web page data
for execution by the browser 126 of the UE 104. This HTTP
response 134 is based on a HTTP request 132 received by
the INE 104 from the UE 102, which was subsequently
forwarded to the origin server 106-1.

At step 502, the splicer module 128 of the INE 104 first
determines whether or not data needs adding to the HTTP
response 134. For example, the INE 104 determines whether
a floating toolbar requires adding to a web page. If no such
data requires adding to the HTTP response 134, then the
process moves on to step 504, at which point the HTTP
response 134 is forwarded to the UE 102 without any
modification. If, at step 502, it is determined that data is to
be added to the HTTP response 134, then the process moves
on to step 506.

At step 506, the splicer module 128 determines whether
or not a splicing operation is possible without first decom-
pressing the data container of the HTTP response 134 to
which a content-encoding is applied. In particular, the
splicer module 128 attempts to identify a content-encoding
of the data container to determine if the content-encoding is
known. If the content-encoding (e.g. gzip, deflate, bzip2,
snappy, etc.) is known, the splicer determines whether the
file format of the content-encoding can be traversed so as to
determine whether data can be spliced with the data con-
tainer without first decompressing the data container.

20

25

40

45

55

8

If at step 506 the splicer determines that it is not possible
to splice data with the data container without first decom-
pressing the data, then the process moves onto step 508
where the data container is decompressed. The decompres-
sion involves removing the content-encoding from the data
container. The desired data that is to be added to the data
container is then added to the decompressed data container
at step 510 so as to augment the decompressed payload data
of'the data container. The augmented decompressed payload
data is then recompressed with the original content-encoding
scheme (or possibly a different content-encoding scheme, if
that would result in less bytes) at step 512, before moving
onto step 518, where the recompressed data container is
incorporated into a modified HTTP response 136, which is
then sent to the UE 102.

If at step 506 the splicer module 128 determines that a
splicing operation is possible (i.e. without full decompres-
sion of the data container being required) then the process
moves on to step 514 where an appropriate “splice point™ is
determined, at which point the data is to be added. The
determination of the splice point is based on the type of
operation being required for the adding of the data, and more
particularly, if the operation is a prepend operation or an
append operation. In a prepend operation, the data is to be
added to precede the compressed payload. In an append
operation, the data is to be added to follow the compressed
payload. In both cases, the added data is to be concatenated
with the compressed payload so as to augment the com-
pressed payload. The splice point is determined by travers-
ing the data structure of the data container as discussed in
more detail with respect to FIG. 6.

After having determined the splice point at step 514, the
process then moves on to step 516, whereby the data is
added to the data container so as to augment the compressed
payload. As discussed in more detail with respect to FIG. 6,
the addition of the data means that a cyclic redundancy
check (CRC) or other type of checksum will need recalcu-
lating before the data container is then incorporated into a
HTTP response 136 (i.e. the modified HTTP response 136).

Then, at step 518, the modified HTTP response 136 (i.e.
original HTTP response 134 plus the additional data) is sent
to UE 102. In the case where the original compressed
payload is a web page and the additional data is a floating
toolbar, the browser 126 of the UE 102 will execute the
modified HTTP response 136 so as to display both the web
page as well as the floating toolbar.

FIG. 6 is a schematic block diagram showing the splicing
operation of FIG. 5 in more detail. In this figure, it is
assumed that the received HTTP response 134 has a pre-
determined content-encoding applied to its content or pay-
load and that the content-encoding is recognised by the INE
104 as being one whose structure can be traversed without
first being fully decompressed. In particular, the structure of
a message having a known content-encoding can be pre-
dicted based on that content-encoding type.

At step 600, the splicer module 128 of the INE 104
receives the HTTP response 136 and parses the response so
as to glean information from the HTTP response 136. In
particular, the splicer module 128 parses the HTTP response
134 to obtain header information associated with the HTTP
response 134, which header information is typically con-
tained within the initial bytes of the HT'TP response 134. The
gleaned header information is read by the splicer module
128 and the splicer module 128 uses this information to
identify the content-encoding type of the data container
(which contains the payload of the HTTP response 134).

US 9,483,579 B2

9

The splicer module 128 has pre-stored information
regarding the layout of various content-encoding types and
identifies the content-encoding type as one which is known.
Knowing the content-encoding type allows the splicer mod-
ule 128 to interpret the bytes and bits of the data container.
Moreover, as certain content-encoding types are stan-
dardised, the splicer module 128 can predict the layout of the
data container in order to quickly establish the relevant
splice point or points. By determining the content-encoding,
the splicer module 128 can establish whether the data
container is one which can be properly traversed so as to
correctly determine the splice points. The splicer module
128 may also perform various other checks such as checking
the HTTP response code to confirm that the response is a
successful response to a request made by the UE 102 (i.e.
and therefore has a status code of “200”), checking whether
the content type of the additional data is compatible with the
content type of the data container, checking if the data
container has a character set compatible with the additional
data, checking if the UE 102 can support the type of
additional data to be added (e.g. JavaScript), and checking
whether or not the additional data should be compressed.

At step 602, the splicer module 128 determines the header
size of the data container. The header size typically com-
prises a fixed number of bytes according to what has been
standardised for that type of header, followed by optional
header bytes. The header itself indicates which optional
headers are present in the data container and hence the
number of bytes in excess of the fixed number dictated by
the relevant standard.

After having determined the header size at step 602, the
process then moves onto step 604 where the splicer module
128 determines the type of operation desired. In particular,
the splicer module 128 determines if either a prepend
operation or an append operation is required. This determi-
nation may be based on one or more factors, for example, the
nature of the user agent 126. For example, if the user agent
126 is of a type known to accept appended content, it is
determined to perform an append operation. Alternatively, if
the user agent 126 is of a type known to accept prepended
content, it is determined to perform a prepend operation.

If at step 604, it is determined that a prepend operation has
been requested, the process moves on to step 606 where the
new data is added to the data container of the HT'TP response
134 at a point that immediately follows the data container
header and which precedes the compressed payload. The
new data is added in such a manner that it is concatenated
with the compressed payload and augments the compressed
payload. The new data may optionally be compressed to
match the compression of the compressed payload before it
is added to the data container. The process then moves onto
step 608 where a cyclic redundancy check (CRC) or other
checksum is recalculated before the updated data container
is incorporated into a modified HTTP response 136, which
may then be sent to the UE 102.

If at step 604, it is determined that an append operation
has been requested, the process moves on to step 610 where
the splicing module 128 continues to parse the data of the
data container that follows the determined header. This data
that follows the header is the compressed payload.

The parsing of the compressed payload continues until
step 612 where the end of the compressed payload is
reached. This is typically flagged by the data itself, and
therefore the splicing module 128 can be readily made aware
of the end of the compressed payload as a consequence of
having determined the content-encoding type.

20

40

45

10

After the end of the compressed payload has been iden-
tified, the process moves onto step 614, at which point the
new data is added so that it immediately follows the com-
pressed payload and precedes any trailer data in the data
container. The new data is added in such a manner that it is
concatenated with the compressed payload and augments the
compressed payload. The process then moves onto step 608
where the cyclic redundancy check (CRC) or other check-
sum (e.g. Adler-32, Fletcher checksum, etc.) is recalculated
before the updated data contained is incorporated into a
modified HTTP response 136, which may then be sent to the
UE 102.

The checksums are used as error-detection mechanisms
that are ideally recalculated or recomputed to account for the
modification of the HTTP response 134, otherwise the user
agent 126 might infer an error in the data and consequently
reject the modified HTTP response 136.

Some specific examples will now be described with
respect to FIGS. 7 to 10 however it will be understood that
these examples are not limiting and that the methods
described herein will extend to any content-encoding type
whose data structure can be traversed.

FIGS. 7 and 8 are schematic block diagrams of data
containers that are encoded with similar type content-en-
codings and which are contained in the HTTP response 134
(See FIG. 3). The data container 734 of FIG. 7 is in
accordance with RFC 1952 and embeds a data stream 740
that is in accordance with RFC 1951. The content encoding
for the data container 734 is therefore “gzip”. The data
container 834 of FIG. 8 is in accordance with RFC 1950 and
embeds a data stream 840 that is in accordance with RFC
1951. The content encoding for the data container 834 is
therefore “deflate”. Both gzip and deflate make use of the
well-known Huffman coding to compress their data streams.
In Huffman coding, each character (or symbol) in a set of
characters (or symbols) is encoded with a Huffiman code (or
pre-fix) unique to that character (or symbol). Smaller codes
are used to encode the characters (or symbols) that are likely
to have higher probability of occurrence in a data set. A so
called Huffiman tree defines which Huffman code represents
which symbol (or character) in a given coding scheme.

In more detail and as shown in FIG. 7, the data container
734 comprises RFC 1952 header data 738, a RFC 1951 data
stream 740 (i.e. the compressed payload) and RFC 1952
trailer data 742. The content-encoding type (i.e. which, in
this case, is gzip) is indicated by a content-encoding header
in the HTTP response 134. In this manner the INE 104 may
discern whether or not the content-encoding is of a type that
the INE 104 can traverse without needing to decompress the
data container 734. In this case, the splicer module 128
recognises the container type as being gzip as indicated by
the content-encoding header and identifies this content-
encoding as one whose data structure can be traversed.

In this example of a gzip file format, the header data 738
has a fixed 10-byte header field and, optionally, extra header
fields. The header data 738 at least comprises a so called
‘magic number’ (i.e. which identifies the file format as gzip),
a version number and a timestamp.

The data stream 740 comprises compressed payload data
and the trailer 742 comprises a CRC-32 checksum and
information regarding the length of the original uncom-
pressed payload data.

As illustrated in FIG. 9, the compressed payload 740 is a
bit stream that comprises a series of segments 940 known as
blocks (of which, for simplicity, only one is illustrated in
FIG. 9). Each block 940 of the bit stream comprises a 3-bit
header 941 followed by compressed payload data 943. The

US 9,483,579 B2

11

payload data 943 may be content for execution by the
browser 126 of the UE 102. The first of the 3 bits of a header
941 is the “last-block-in-stream” marker, which, if the block
is the last block in the bitstream, is set to “1” and otherwise
(i.e. if the block is not the last block in the bitstream) is set
to “0”.

As defined in RFC 1951, the next two bits of a header 941
designate the encoding method used for the block (i.e. the
block type). A value of “00” (Type 0) indicates that the data
that follows the header is raw data (i.e. uncompressed)
between 0 and 65,535 bytes in length. A value of “01” (Type
1) indicates that the block is a static Huffman compressed
block, which has data compressed in accordance with a
pre-defined Huffman tree as defined in RFC 1951 itself. A
value of “10” (Type 2) indicates that the block is a block that
has data compressed in accordance with a dynamic Huffman
tree which is itself provided in the block.

In the case of a prepend operation, the HT TP response 134
comprising the data container 734 in the gzip file format is
received at the INE 104 and the splicer module 128 identifies
that the content-encoding is gzip. Once the content-encoding
has been identified, the splicer module 128 is aware of the
general format of the gzip data container 734. The splicer
module 128 then determines the length of the header 738.
This is done by parsing the header 738 to determine if any
optional extra header fields are present and thereby deter-
mining whether the header 738 is equal to or greater than the
fixed 10-bytes.

The header data 738 indicates whether optional extra
headers are present using one or more flags. For example, if
the bit relating to “FLG.FEXTRA” is set in the 10 byte fixed
header, the 2-byte field “XLEN” will be included in the
header, which will then be followed by “XLEN” bytes. If the
bit relating to “FLG.FNAME” is set in the 10 byte fixed
header, a field consisting of a series of bytes terminated by
a null or zero byte will be included in the header. Similarly,
if the bit relating to “FLG.FCOMMENT” is set in the 10
byte fixed header, a field consisting of a series of bytes
terminated by a null or zero byte will be included in the
header. If the bit relating to “FLG.FHCRC” is set in the 10
byte fixed header, a 2 byte field is included in the header.
Therefore, specific bits in the 10 byte fixed header act as
flags, which are used to indicate the presence of one or more
optional extra header fields. The optional extra header fields
themselves are indicative of their own size. Where FLG.F-
NAME and FLG.FCOMMENT are used, the splicer module
128 must continue parsing the header until the null byte is
found in order to establish the end of that optional extra
header, and hence its size.

Once the splicer module 128 has determined the end of
the header data 738 it can then add the new data into the data
container 734 at that point. The new data will precede the
compressed payload 740 and hence the new data is said to
pre-pend the compressed payload 740. The splicer module
128 writes the data as an RFC 1951 data block (either
uncompressed (Type 0) or compressed (Type 1 or 2),
depending on what the splicer module 128 decides) before
it is prepended to the compressed payload.

In an append operation, the splicer module 128 first, as
described above, establishes the end of the header data 738,
and then parses the payload bitstream 740 to establish its
end. As the splicer module 128 is aware that the data
container 734 is in the gzip format, it is aware that the
compressed bitstream is in accordance with RFC1951 and so
therefore can readily identify the layout of the bitstream.

For each block that is of “Type 0, the splicer module 128
parses the first three block header bits to identify whether the

20

25

30

40

45

12

block is the last block in the datastream and to identify the
block type. Then, the splicer module 128 parses the next two
bytes which indicate the length of the block and, based on
that identified block length, skips over the remainder of
block so that the end of that block is reached.

For each block that is of “Type 1°, again, the splicer
module 128 parses the first three block header bits to identify
whether the block is the last block in the datastream and to
identify the block type. Then, the splicer module 128 parses
the remainder of the block using the pre-defined Huffman
tree to identify each consecutive Huffman code (sometimes
known as a pre-fix) that encodes a character (or symbol) in
the block. In accordance with RFC 1951, a specific symbol,
‘value 256, is always used to indicate the end of a block (i.e.
it’s always the last symbol in a block). Accordingly, once the
splicer module 128 has identified the specific Huffman code
that encodes the end of block symbol, it knows that the end
of the block has been reached. The pre-defined Huffman
code tree for “Type 1’ blocks may be pre-stored in a memory
(not shown) from where it is retrieved by the splicer module
128 for use in parsing a “Type 1° block.

For each block that is of ‘“Type 2’ again, the splicer
module 128 parses the first three block header bits to identify
whether the block is the last block in the data stream and to
identify the block type. The splicer module 128 then con-
tinues parsing until the dynamic Huffman tree for that block
has been decoded in accordance with RFC 1951. The splicer
module 128 then parses through the remainder of the block
using that dynamic Huffman tree to identity each consecu-
tive Huffman code in the block, until as with “Type 1’ blocks,
the code encoding the ‘end of block’ symbol is identified.

It will be appreciated that for ‘Type 1’ and “Type 2’
blocks, the value of each Huffman code, in other words,
what character or symbol that code maps to or what copy
command it maps to, does not need to be stored. In other
words, the splicer module 128 simply parses but does not
un-compress the block.

The splicer module 128 parses through the blocks in this
way until the last block in the bitstream is found, as indicated
by the first bit of the header of the last block being “1”. The
first bit of the header of this last block is then changed from
“1”to “0” so that it no longer indicates that it is the last block
in the sequence (i.e. because the splicer module 128 is about
to add new data). The splicer module 128 then continues to
traverse the last block so as to find the end of this block, and
hence the end of the compressed bitstream. The splicer
module 128 then creates a new block with the new data
(either compressed or uncompressed) to be appended to the
compressed bitstream and adds this to the determined end of
the compressed bitstream.

After either of the prepend operation or the append
operation has been performed, the CRC of the data container
734 is recomputed and the overall uncompressed length
value is recalculated and then the trailer data 742 updated
accordingly with these values.

In the case of an append operation, given the CRC of the
original data, and as the uncompressed length of the
appended data is known, then an updated CRC can readily
be calculated following code definitions provided in RFC
1952.

In the case of a pre-pend operation an updated CRC can
be calculated with, for example, the known crc32_combine
technique, using a CRC calculated for the pre-pended data,
the CRC of the original data and the uncompressed length of
the original data as provided in the RFC 1952 trailer data.

In the case of a prepend operation it is necessary to
identify the start of the trailer data 742 in order that it can be

US 9,483,579 B2

13

updated. The splicer module 128 can identify the start of the
trailer data 742 in several ways. In one example, the splicer
module 128 skips directly to the end of the HTTP message
that contains the data container 740 and then moves back 8
Octets to the presumed start of the trailer data 742. This
technique is very efficient, but assumes that the HTTP
message contains a well-formed RFC 1952 container, with
no excess trailing data beyond that of the RFC 1952 trailer
data 742, which in some instances might not be the case.
This technique therefore might not always correctly identify
the start of the trailer data 742.

In another example, the splicer module 128 parses
through the compressed data stream 740, in the manner
described above for the append use case, until the end of the
last block of the data stream 740 is identified. This method
of updating the trailer data 742 is relatively slow but is safer
in that the start of the trailer data 742 is always accurately
identified.

In the example of FIG. 8, the data container 834 is in
accordance with RFC 1950 and embeds a data stream in
accordance with RFC 1951. The content encoding for the
data container 834 is therefore “deflate”. The data container
834 comprises RFC 1950 header data 838, a data stream 840
(i.e. the compressed payload) and RFC 1950 trailer data 842.

Similarly as described above with respect to the example
of FIG. 7, the INE 104 identifies that the content encoding
of the data container 834 is ‘deflate’ based on the HTTP
content encoding header of the HTTP response 134. As such,
the INE 104 may discern whether or not this content-
encoding is of a type that the INE 104 can traverse without
needing to decompress the HT'TP response 834. In this case,
the splicer module 128 recognises the container type as
being deflate as indicated by the content-encoding header
and identifies this content-encoding as one whose data
structure can be traversed.

In this example of a ‘deflate’ file format, the header data
838 comprises a 2 byte header and optionally, a 4 byte
“DICT” dictionary identifier. The header data 838 comprises
information identifying the compression method used to
compress the payload (i.e. the deflate compression method).
The header data 838 also comprises various flags, which
perform different operations, for example, indicating the
presence of the “DICT” dictionary identifier. The data
stream 840 comprises the compressed payload and the trailer
data 842 comprises an Adler-32 checksum.

As with the example of FIG. 7, the payload of FIG. 8
comprises a bitstream having a series of blocks, one of
which is illustrated in FIG. 9.

The splicer module 128 parses the first two bytes of the
header data 838 and determines if any optional extra headers
fields are present (and hence if the header data 838 is larger
than the fixed 2-byte header size). The slicer module deter-
mines whether optional extra headers are present based on
one or more flags in the first two bytes. For example, the
second byte comprises 8 bits, of which the fifth bit acts as
a flag, which when set, indicates that a 4-byte “DICT”
dictionary identifier is present immediately after the second
byte (i.e. after the 2 byte fixed header).

For example, the splicer module 128 may therefore deter-
mine that the length or size of the header data 838 is 2 bytes
if no optional dictionary is used or 6 bytes if an optional
dictionary is defined. Hence the splicer module 128 deter-
mines the end position of the header data 838 (i.e. and hence
the beginning of the bit stream that follows the end of the
header data).

The prepend operation and the append operation of this
example operate in a similar manner to that described with

20

30

35

40

45

55

65

14

respect to FIG. 7. Namely, for the prepend operation, the
splicer module 128 determines the end of the header data
838 as described above and then adds the new data to the
data container 834 so as to augment the compressed payload
840. For the append operation, the splicer module 128 parses
the blocks of compressed payload 840 in the same manner
as described with respect to FIG. 7 so as to determine the end
of the compressed payload 840, and then adds the new data
to augment the compressed payload 840.

After an append operation has been performed, the Adler-
32 checksum of the data container 834 is recomputed.
Again, as the checksum of the original data is known, and as
the uncompressed length of the appended data is known,
then an updated checksum can readily be calculated follow-
ing code definitions provided in RFC 1950. However, for the
RFC 1950 container, it should be noted that in the event of
a pre-pend operation it is not possible to re-compute the
Adler-32 checksum because the RFC 1950 container does
not indicate the length of the uncompressed data in the
payload, a value which is necessary to re-calculate the
Adler-32 checksum following a pre-pend operation.

The above embodiments are to be understood as illustra-
tive examples of the invention. Further embodiments of the
invention are envisaged.

In a further example, the splicing module 128 parses and
appends additional data to a compressed payload in a data
container 1034 (see FIG. 10) that is in the bzip2 file format.
The data container 1034 comprises a 4-byte header data
1038, one or more compressed segments or blocks 1040 (i.e.
the compressed payload) and footer or trailer data 1042. The
header data 1038 is byte aligned but the rest of the container,
including the footer data 1042 is a bit stream.

Each compressed block 1040 comprises a 48 bit block
start marker (0x314159265359), a 32 bit CRC of the uncom-
pressed data in the block, and compressed payload data. The
footer data 1042 follows on immediately the last compressed
block and comprises a 48 bit end of stream sequence
(0x177245385090), a 32 bit CRC for the uncompressed data
in the complete stream, and padding to end of byte with 0
bits having an end-of-stream (EOS) marker 1042 and a
32-bit CRC.

In one example, the splicer module 128 performs an
append operation in the following way. The splicer module
128 identifies the end of the container 1034 and then skips
backwards 4 bytes to take account of the length of the 32 bit
CRC. Next, the splicer module 128 parses backwards a bit
at a time until the end of stream marker (0x177245385090)
is found in the bitstream. Next, splicer module 128 appends
the data to be added by writing the added data as a new bzip2
block commencing at the bit position where the end of
stream marker started. The splicer module 128 then writes
updated footer data 1042 comprising the end of stream
marker (0x177245385090) and un-updated CRC for the
whole stream. If necessary, the splicer module 128 fills the
footer data 1042 to the next byte boundary with zero bits.

In this way, the new block becomes the last block in the
container (i.e. between the previous last block and the end of
stream marker).

The splicer module 128 may determine the updated CRC
in the same way as described above for the append operation
for gzip.

In the above described embodiments, the gzip, deflate and
bzip2 file formats were discussed. However, it will be
appreciated that the prepending and appending operations
without full decompression can be possible with other file
formats having a compressed payload. For example, the
prepend and append operations can be performed with an

US 9,483,579 B2

15

HTTP response having a data container 1134 in the “snappy
framing” file format which is illustrated in FIGS. 11a and
115. Also, it will be appreciated that such file formats need
not be HTTP compliant and therefore may be associated
with any other signaling protocols.

The data container 1134 having the snappy framing
format of content-encoding comprises a series of segments
known as chunks 1146. At least one of the chunks 1146
stores compressed data but other chunks 1146 may store
uncompressed data. There are three chunk types in the
snappy framing format: a stream identifier chunk; a com-
pressed data chunk; and an uncompressed data chunk.

The data container 1134 begins with a stream identifier
chunk 1146-1, which has a fixed byte-size of 10 bytes. Each
subsequent chunk 1146-2 to 1146-4 can be either a com-
pressed data chunk or an un-compressed data chunk. A
compressed data chunk or an un-compressed data chunk can
thought of as independent compressed or uncompressed data
stream, as the case may be.

As shown in FIG. 115, a data chunk 1146 comprises a
single byte chunk identifier 1148 followed by a 3-byte chunk
length 1150 indicating the size of the chunk, an optional
CRC 1152 and then the compressed or uncompressed data
1154.

In a prepend operation, the splicer module 128 parses
from the start of the data container 1134 until the first
compressed or uncompressed chunk 1146-2 is identified (i.e.
which will be immediately after the stream identifier chunk
1146-1). The new data to be prepended is encoded into a
snappy framing format data chunk and then added to pre-
cede the first data chunk 1146-2 (i.e. between the stream
identifier chunk 1146-1 and the data chunk 1146-2).

In an append operation, the splicer module 128 skips to
the end of the data container 1134 and the new data to be
appended is encoded into a snappy framing format data
chunk and then added to follow the last chunk 1146-4.

Although embodiments have been described as a INE
such as a proxy server for intercepting HTTP messages, it
will be understood that the INE may be a different type of
server, for example, an email server for intercepting email
messages having a predetermined content-encoding and that
such email messages can be modified without decompres-
sion or with limited decompression (i.e. the entire email
message need not be decompressed before data is added).

In the above described embodiment the additional data is
appended or pre-pended to compressed data in a data
container in a HTTP response message. In an alternative
embodiment, the additional data is appended or pre-pended
to compressed data in a data container in a HTTP push
message.

In alternative embodiments, the splicer module 128 may
parse through at least a portion of the data container to
determine the end of the sequence of segments based on a
determined size of each segment. The size may be a fixed
pre-determined size pre-known by the slicer module 128 or
determined by the splicer module from header information
in the relevant data container.

In the above embodiments, the splicer module was
described as being integrated with the INE. In alternative
embodiments, the functions of the splicer module may be
integrated with another network element such as a content
provider. The content provider may thereby modify content
before serving the content to a requesting entity.

In other alternative embodiments, there may be no inter-
cepting of messages in a communication system. In one
example, the functions of the splicer module may be inte-
grated with a general purpose archiver application. Such

10

15

20

25

30

35

40

45

50

55

60

16

archiver applications are typically used to backup files in a
file system and in doing so compress the backed up data.
When updating an existing archive, if an archiver applica-
tion determines that a file has had data appended or
prepended to it since a previous archiving operation, the
archiver could function in the manner of the splicer module
described above to efficiently append or prepend the new
data to the archived version of the file.

It will be appreciated that the embodiments described
herein are based on file formats that have structures that can
be traversed. Errors in the compressed data stream that affect
such traversal could therefore prevent a message from being
modified. Therefore, in further embodiments, the splicer
module is equipped with an error detection mechanism,
which upon detecting an error in the compressed data stream
or container format that is determined to deleteriously affect
a traversal operation, can abort the modification process. In
the case that the modification process is aborted, the INE is
then caused to send the message, without modification, to its
intended destination. If the error is found in a final block of
a data stream, the splicer module may continue with the
modification.

It is to be understood that any feature described in relation
to any one embodiment may be used alone, or in combina-
tion with other features described, and may also be used in
combination with one or more features of any other of the
embodiments, or any combination of any other of the
embodiments. Furthermore, equivalents and modifications
not described above may also be employed without depart-
ing from the scope of the invention, which is defined in the
accompanying claims.

What is claimed is:

1. An apparatus for adding content to a data container, the
apparatus comprising:

at least one memory including computer program code;

at least one processor in data communication with the

memory, wherein the processor is configured to:

parse through at least a portion of the data container,
wherein the data container comprises one or more
segments arranged in a sequence and a container
trailer, wherein each segment contains payload data,
and wherein at least one of the one or more segments
is compressed and which container trailer follows the
sequence of segments and comprises a marker
indicative that an end of the sequence of segments
has been reached, to determine an end of the
sequence of segments and a beginning of the con-
tainer trailer by parsing backwards through at least
part of the container trailer to identity the marker;
and

add content to the data container between the marker and

the end of the sequence of segments, while the at least
one of the segments remains compressed.

2. The apparatus of claim 1, wherein the processor is
further configured to parse the data container so as to
determine a checksum for the data container and re-compute
the checksum based on the added data.

3. The apparatus of claim 1, wherein the processor is
further configured to:

receive the data container in a message over a commu-

nication network prior to parsing the data container and
adding the content to the data container; and

forward the message over the communication network

subsequent to parsing the data container and adding the
content to the data container.

4. The apparatus of claim 3, wherein the message is a
hypertext transfer protocol (HTTP) message.

US 9,483,579 B2

17

5. A method for adding content to a data container, the
method comprising:

parsing through at least a portion of the data container,

wherein the data container comprises one or more
Segments arranged in a sequence and a container
trailer, wherein each segment contains payload data,
and wherein at least one of the one or more segments
is compressed and which container trailer follows the
sequence of segments and comprises a marker indica-
tive that an end of the sequence of segments has been
reached, so as to determine an end of the sequence of
segments and a beginning of the container trailer by
parsing backwards through at least part of the container
trailer to identify the marker; and

adding content to the data container between the marker

and the end of the sequence of segments, while the at
least one of the segments remains compressed.
6. The method of claim 5, the method comprising parsing
the data container so as to determine a checksum for the data
container and re-computing the checksum based on the
added data.
7. The method of claim 5, the method comprising:
receiving the data container in a message over a commu-
nication network prior to parsing the data container and
adding the content to the data container; and

forwarding the message over the communication network
subsequent to parsing the data container and adding the
content to the data container.

8. The method of claim 7, wherein the message is a
hypertext transfer protocol (HTTP) message.

9. A non-transitory computer-readable storage medium
having computer-executable instructions stored thereon,
which, when executed by a processor cause a computing

18

device to perform a method for adding content to a data
container, the method comprising:

parsing through at least a portion of the data container,

wherein the data container comprises one or more
segments arranged in a sequence and a container trailer,
wherein each segment contains payload data, and
wherein at least one of the one or more segments is
compressed and which container trailer follows the
sequence of segments and comprises a marker indica-
tive that an end of the sequence of segments has been
reached, so as to determine an end of the sequence of
segments and a beginning of the container trailer by
parsing backwards through at least part of the container
trailer to identity the marker; and

adding content to the data container between the marker

and the end of the sequence of segments, while the at
least one of the segments remains compressed.
10. The non-transitory computer readable storage medium
of claim 9, wherein the method comprises parsing the data
container so as to determine a checksum for the data
container and re-computing the checksum based on the
added data.
11. The non-transitory computer readable storage medium
of claim 9, wherein the method comprises:
receiving the data container in a message over a commu-
nication network prior to parsing the data container and
adding the content to the data container; and

forwarding the message over the communication network
subsequent to parsing the data container and adding the
content to the data container.

12. The non-transitory computer readable storage medium
of claim 11, wherein the message is a hypertext transfer
protocol (HTTP) message.

#* #* #* #* #*

